Effects of local anesthetics on Na+ channels containing the equine hyperkalemic periodic paralysis mutation.
نویسندگان
چکیده
We examined the ability of local anesthetics to correct altered inactivation properties of rat skeletal muscle Na+channels containing the equine hyperkalemic periodic paralysis (eqHPP) mutation when expressed in Xenopusoocytes. Increased time constants of current decay in eqHPP channels compared with wild-type channels were restored by 1 mM benzocaine but were not altered by lidocaine or mexiletine. Inactivation curves, which were determined by measuring the dependence of the relative peak current amplitude after depolarization to -10 mV on conditioning prepulse voltages, could be shifted in eqHPP channels back toward that observed for wild-type (WT) channels using selected concentrations of benzocaine, lidocaine, and mexiletine. Recovery from inactivation at -80 mV (50-ms conditioning pulse) in eqHPP channels followed a monoexponential time course and was markedly accelerated compared with wild-type channels (τWT= 10.8 ± 0.9 ms; τeqHPP= 2.9 ± 0.4 ms). Benzocaine slowed the time course of recovery (τeqHPP,ben = 9.6 ± 0.4 ms at 1 mM) in a concentration-dependent manner. In contrast, the recovery from inactivation with lidocaine and mexiletine had a fast component (τfast,lid = 3.2 ± 0.2 ms; τfast,mex = 3.1 ± 0.2 ms), which was identical to the recovery in eqHPP channels without drug, and a slow component (τslow,lid = 1,688 ± 180 ms; τslow,mex = 2,323 ± 328 ms). The time constant of the slow component of the recovery from inactivation was independent of the drug concentration, whereas the fraction of current recovering slowly depended on drug concentrations and conditioning pulse durations. Our results show that local anesthetics are generally incapable of fully restoring normal WT behavior in inactivation-deficient eqHPP channels.
منابع مشابه
Effects of local anesthetics on Na1 channels containing the equine hyperkalemic periodic paralysis mutation
Sah, Rajan L., Robert G. Tsushima, and Peter H. Backx. Effects of local anesthetics on Na1 channels containing the equine hyperkalemic periodic paralysis mutation. Am. J. Physiol. 275 (Cell Physiol. 44): C389–C400, 1998.—We examined the ability of local anesthetics to correct altered inactivation properties of rat skeletal muscle Na1 channels containing the equine hyperkalemic periodic paralysi...
متن کاملDifferent ability of clenbuterol and salbutamol to block sodium channels predicts their therapeutic use in muscle excitability disorders.
Activation of muscle beta(2)-adrenergic receptors successfully counteracted sarcolemma inexcitability in patients suffering from hyperkalemic periodic paralysis (HPP), a hereditary disease caused by mutations in the gene encoding the skeletal muscle sodium channel. Looking for potential modulation of these channels by beta(2)-adrenergic pathway using patch-clamp technique, we found that clenbut...
متن کاملHyperkalemic periodic paralysis M1592V mutation modifies activation in human skeletal muscle Na+ channel.
Mutations in the human skeletal muscle Na+ channel underlie the autosomal dominant disease hyperkalemic periodic paralysis (HPP). Muscle fibers from affected individuals exhibit sustained Na+ currents thought to depolarize the sarcolemma and thus inactivate normal Na+ channels. We expressed human wild-type or M1592V mutant α-subunits with the β1-subunit in Xenopus laevis oocytes and recorded Na...
متن کاملA sodium channel defect in hyperkalemic periodic paralysis: potassium-induced failure of inactivation.
Hyperkalemic periodic analysis (HPP) is an autosomal dominant disorder characterized by episodic weakness lasting minutes to days in association with a mild elevation in serum K+. In vitro measurements of whole-cell currents in HPP muscle have demonstrated a persistent, tetrodotoxin-sensitive Na+ current, and we have recently shown by linkage analysis that the Na+ channel alpha subunit gene may...
متن کاملVoltage-sensor movements describe slow inactivation of voltage-gated sodium channels II: A periodic paralysis mutation in NaV1.4 (L689I)
In skeletal muscle, slow inactivation (SI) of Na(V)1.4 voltage-gated sodium channels prevents spontaneous depolarization and fatigue. Inherited mutations in Na(V)1.4 that impair SI disrupt activity-induced regulation of channel availability and predispose patients to hyperkalemic periodic paralysis. In our companion paper in this issue (Silva and Goldstein. 2013. J. Gen. Physiol. http://dx.doi....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The American journal of physiology
دوره 275 2 Pt 1 شماره
صفحات -
تاریخ انتشار 1998